简介

  • 原问题
  • $p^*$为原始优化问题的最优值

    $p^{*}=i n f\{f(x)+g(z) | A x+B z=c\}$

  • 增广拉格朗日形式:

    $L_{\rho}(x, z, \lambda)=f(x)+g(z)+\lambda^{T}(A x+B z-c)+(\rho / 2)|A x+B z-c|_{2}^{2}$

  • 迭代

ADMM的简化

  • 残差:$r=A x+B z-c$
  • scaled处理:
  • $u=(1 / \rho) \lambda$,$u$称为scaled对偶变量
  • 迭代

ADMM的两个假设

  • The (extended-real-valued) functions $f$: $\mathbf{R}^{n} \rightarrow \mathbf{R} \cup \{+\infty\}$ and $g$: $\mathbf{R}^{m} \rightarrow \mathbf{R} \cup\{+\infty\}$are closed, proper, and convex.
  • The unaugmented Lagrangian $L_0$ has a saddle point $\left(x^{\star}, z^{\star}, \lambda^{\star}\right)$, $L_{0}\left(x^{\star}, z^{\star}, \lambda\right) \leq L_{0}\left(x^{\star}, z^{\star}, \lambda^{\star}\right) \leq L_{0}\left(x, z, \lambda^{\star}\right)$

停止准则