ADMM
简介
- 原问题
$p^*$为原始优化问题的最优值
$p^{*}=i n f\{f(x)+g(z) | A x+B z=c\}$
增广拉格朗日形式:
$L_{\rho}(x, z, \lambda)=f(x)+g(z)+\lambda^{T}(A x+B z-c)+(\rho / 2)|A x+B z-c|_{2}^{2}$
迭代
ADMM的简化
- 残差:$r=A x+B z-c$
- scaled处理:
- $u=(1 / \rho) \lambda$,$u$称为scaled对偶变量
- 迭代
ADMM的两个假设
- The (extended-real-valued) functions $f$: $\mathbf{R}^{n} \rightarrow \mathbf{R} \cup \{+\infty\}$ and $g$: $\mathbf{R}^{m} \rightarrow \mathbf{R} \cup\{+\infty\}$are closed, proper, and convex.
- The unaugmented Lagrangian $L_0$ has a saddle point $\left(x^{\star}, z^{\star}, \lambda^{\star}\right)$, $L_{0}\left(x^{\star}, z^{\star}, \lambda\right) \leq L_{0}\left(x^{\star}, z^{\star}, \lambda^{\star}\right) \leq L_{0}\left(x, z, \lambda^{\star}\right)$