1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
| class LSTMCell(Layer): """Cell class for the LSTM layer.
# Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`).x use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al. (2015)]( http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. """
def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, **kwargs): super(LSTMCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias
self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint)
self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.state_size = (self.units, self.units) self.output_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None
def build(self, input_shape): input_dim = input_shape[-1]
if type(self.recurrent_initializer).__name__ == 'Identity': def recurrent_identity(shape, gain=1., dtype=None): del dtype return gain * np.concatenate( [np.identity(shape[0])] * (shape[1] // shape[0]), axis=1)
self.recurrent_initializer = recurrent_identity
self.kernel = self.add_weight(shape=(input_dim, self.units * 4), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint)
if self.use_bias: if self.unit_forget_bias: @K.eager def bias_initializer(_, *args, **kwargs): return K.concatenate([ self.bias_initializer((self.units,), *args, **kwargs), initializers.Ones()((self.units,), *args, **kwargs), self.bias_initializer((self.units * 2,), *args, **kwargs), ]) else: bias_initializer = self.bias_initializer self.bias = self.add_weight(shape=(self.units * 4,), name='bias', initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None
self.kernel_i = self.kernel[:, :self.units] self.kernel_f = self.kernel[:, self.units: self.units * 2] self.kernel_c = self.kernel[:, self.units * 2: self.units * 3] self.kernel_o = self.kernel[:, self.units * 3:]
self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units] self.recurrent_kernel_f = ( self.recurrent_kernel[:, self.units: self.units * 2]) self.recurrent_kernel_c = ( self.recurrent_kernel[:, self.units * 2: self.units * 3]) self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:]
if self.use_bias: self.bias_i = self.bias[:self.units] self.bias_f = self.bias[self.units: self.units * 2] self.bias_c = self.bias[self.units * 2: self.units * 3] self.bias_o = self.bias[self.units * 3:] else: self.bias_i = None self.bias_f = None self.bias_c = None self.bias_o = None self.built = True
def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( K.ones_like(inputs), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( K.ones_like(states[0]), self.recurrent_dropout, training=training, count=4)
dp_mask = self._dropout_mask rec_dp_mask = self._recurrent_dropout_mask
h_tm1 = states[0] c_tm1 = states[1]
if self.implementation == 1: if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs x_i = K.dot(inputs_i, self.kernel_i) x_f = K.dot(inputs_f, self.kernel_f) x_c = K.dot(inputs_c, self.kernel_c) x_o = K.dot(inputs_o, self.kernel_o) if self.use_bias: x_i = K.bias_add(x_i, self.bias_i) x_f = K.bias_add(x_f, self.bias_f) x_c = K.bias_add(x_c, self.bias_c) x_o = K.bias_add(x_o, self.bias_o)
if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i)) f = self.recurrent_activation(x_f + K.dot(h_tm1_f, self.recurrent_kernel_f)) c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1_c, self.recurrent_kernel_c)) o = self.recurrent_activation(x_o + K.dot(h_tm1_o, self.recurrent_kernel_o)) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] z = K.dot(inputs, self.kernel) if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] z += K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias)
z0 = z[:, :self.units] z1 = z[:, self.units: 2 * self.units] z2 = z[:, 2 * self.units: 3 * self.units] z3 = z[:, 3 * self.units:]
i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3)
h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return h, [h, c]
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(LSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) class LSTM(RNN): """Long Short-Term Memory layer - Hochreiter 1997.
# Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al. (2015)]( http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. The returned elements of the states list are the hidden state and the cell state, respectively. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.
# References - [Long short-term memory]( http://www.bioinf.jku.at/publications/older/2604.pdf) - [Learning to forget: Continual prediction with LSTM]( http://www.mitpressjournals.org/doi/pdf/10.1162/089976600300015015) - [Supervised sequence labeling with recurrent neural networks]( http://www.cs.toronto.edu/~graves/preprint.pdf) - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](https://arxiv.org/abs/1512.05287) """
@interfaces.legacy_recurrent_support def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if implementation == 0: warnings.warn('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') if K.backend() == 'theano' and (dropout or recurrent_dropout): warnings.warn( 'RNN dropout is no longer supported with the Theano backend ' 'due to technical limitations. ' 'You can either set `dropout` and `recurrent_dropout` to 0, ' 'or use the TensorFlow backend.') dropout = 0. recurrent_dropout = 0.
cell = LSTMCell(units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, unit_forget_bias=unit_forget_bias, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation) super(LSTM, self).__init__(cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer)
def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(LSTM, self).call(inputs, mask=mask, training=training, initial_state=initial_state)
@property def units(self): return self.cell.units
@property def activation(self): return self.cell.activation
@property def recurrent_activation(self): return self.cell.recurrent_activation
@property def use_bias(self): return self.cell.use_bias
@property def kernel_initializer(self): return self.cell.kernel_initializer
@property def recurrent_initializer(self): return self.cell.recurrent_initializer
@property def bias_initializer(self): return self.cell.bias_initializer
@property def unit_forget_bias(self): return self.cell.unit_forget_bias
@property def kernel_regularizer(self): return self.cell.kernel_regularizer
@property def recurrent_regularizer(self): return self.cell.recurrent_regularizer
@property def bias_regularizer(self): return self.cell.bias_regularizer
@property def kernel_constraint(self): return self.cell.kernel_constraint
@property def recurrent_constraint(self): return self.cell.recurrent_constraint
@property def bias_constraint(self): return self.cell.bias_constraint
@property def dropout(self): return self.cell.dropout
@property def recurrent_dropout(self): return self.cell.recurrent_dropout
@property def implementation(self): return self.cell.implementation
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(LSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
@classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config)
|