1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
| # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Xiaoyu Chen) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import copy import logging import os import torch import torch.distributed as dist import torch.optim as optim import yaml from tensorboardX import SummaryWriter from torch.utils.data import DataLoader from wenet.dataset.dataset import AudioDataset, CollateFunc from wenet.transformer.asr_model import init_asr_model from wenet.utils.checkpoint import load_checkpoint, save_checkpoint from wenet.utils.executor import Executor from wenet.utils.scheduler import WarmupLR if __name__ == '__main__': parser = argparse.ArgumentParser(description='training your network') parser.add_argument('--config', required=True, help='config file') parser.add_argument('--train_data', required=True, help='train data file') parser.add_argument('--cv_data', required=True, help='cv data file') parser.add_argument('--gpu', type=int, default=-1, help='gpu id for this rank, -1 for cpu') parser.add_argument('--model_dir', required=True, help='save model dir') parser.add_argument('--checkpoint', help='checkpoint model') parser.add_argument('--tensorboard_dir', default='tensorboard', help='tensorboard log dir') parser.add_argument('--local_rank', default=0, type=int, help='node rank for distributed training') parser.add_argument('--ddp.rank', dest='rank', default=0, type=int, help='node rank for distributed training') parser.add_argument('--ddp.world_size', dest='world_size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--ddp.dist_backend', dest='dist_backend', default='nccl', choices=['nccl', 'gloo'], help='distributed backend') parser.add_argument('--ddp.init_method', dest='init_method', default=None, help='ddp init method') parser.add_argument('--num_workers', default=0, type=int, help='num of subprocess workers for reading') parser.add_argument('--cmvn', default=None, help='global cmvn file') args = parser.parse_args() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') # os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Set random seed torch.manual_seed(777) print(args) with open(args.config, 'r') as fin: configs = yaml.load(fin) distributed = args.world_size >= 1 raw_wav = configs['raw_wav'] train_collate_func = CollateFunc(**configs['collate_conf'], raw_wav=raw_wav) cv_collate_conf = copy.deepcopy(configs['collate_conf']) # no augmenation on cv set cv_collate_conf['spec_aug'] = False cv_collate_conf['spec_sub'] = False if raw_wav: cv_collate_conf['feature_dither'] = 0.0 cv_collate_conf['speed_perturb'] = False cv_collate_conf['wav_distortion_conf']['wav_distortion_rate'] = 0 cv_collate_func = CollateFunc(**cv_collate_conf, raw_wav=raw_wav) dataset_conf = configs.get('dataset_conf', {}) train_dataset = AudioDataset(args.train_data, **dataset_conf, raw_wav=raw_wav) cv_dataset = AudioDataset(args.cv_data, **dataset_conf, raw_wav=raw_wav) if distributed: logging.info('training on multiple gpu, this gpu {}'.format(args.local_rank)) dist.init_process_group(args.dist_backend) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, shuffle=True) cv_sampler = torch.utils.data.distributed.DistributedSampler( cv_dataset, shuffle=False) else: train_sampler = None cv_sampler = None train_data_loader = DataLoader(train_dataset, collate_fn=train_collate_func, sampler=train_sampler, shuffle=(train_sampler is None), batch_size=1, num_workers=args.num_workers) cv_data_loader = DataLoader(cv_dataset, collate_fn=cv_collate_func, sampler=cv_sampler, shuffle=False, batch_size=1, num_workers=args.num_workers) if raw_wav: input_dim = configs['collate_conf']['feature_extraction_conf'][ 'mel_bins'] else: input_dim = train_dataset.input_dim vocab_size = train_dataset.output_dim # Save configs to model_dir/train.yaml for inference and export configs['input_dim'] = input_dim configs['output_dim'] = vocab_size configs['cmvn_file'] = args.cmvn configs['is_json_cmvn'] = raw_wav if args.local_rank == 0: saved_config_path = os.path.join(args.model_dir, 'train.yaml') with open(saved_config_path, 'w') as fout: data = yaml.dump(configs) fout.write(data) # Init asr model from configs model = init_asr_model(configs) print(model) # !!!IMPORTANT!!! # Try to export the model by script, if fails, we should refine # the code to satisfy the script export requirements script_model = torch.jit.script(model) script_model.save(os.path.join(args.model_dir, 'init.zip')) executor = Executor() # If specify checkpoint, load some info from checkpoint if args.checkpoint is not None: infos = load_checkpoint(model, args.checkpoint) else: infos = {} start_epoch = infos.get('epoch', -1) + 1 cv_loss = infos.get('cv_loss', 0.0) step = infos.get('step', -1) num_epochs = configs.get('max_epoch', 100) model_dir = args.model_dir writer = None if args.local_rank == 0: os.makedirs(model_dir, exist_ok=True) exp_id = os.path.basename(model_dir) writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id)) if distributed: # assert (torch.cuda.is_available()) # cuda model is required for nn.parallel.DistributedDataParallel device = torch.device("cuda", args.local_rank) model.to(device) model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True,device_ids=[args.local_rank],output_device=args.local_rank) else: use_cuda = args.gpu >= 0 and torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu', args.local_rank) model = model.to(device) optimizer = optim.Adam(model.parameters(), **configs['optim_conf']) scheduler = WarmupLR(optimizer, **configs['scheduler_conf']) final_epoch = None configs['rank'] = args.local_rank if start_epoch == 0 and args.local_rank == 0: save_model_path = os.path.join(model_dir, 'init.pt') save_checkpoint(model, save_model_path) # Start training loop executor.step = step scheduler.set_step(step) for epoch in range(start_epoch, num_epochs): if distributed: train_sampler.set_epoch(epoch) lr = optimizer.param_groups[0]['lr'] logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr)) executor.train(model, optimizer, scheduler, train_data_loader, device, writer, configs) total_loss, num_seen_utts = executor.cv(model, cv_data_loader, device, configs) if args.world_size > 1: # all_reduce expected a sequence parameter, so we use [num_seen_utts]. num_seen_utts = torch.Tensor([num_seen_utts]).to(device) # the default operator in all_reduce function is sum. dist.all_reduce(num_seen_utts) total_loss = torch.Tensor([total_loss]).to(device) dist.all_reduce(total_loss) cv_loss = total_loss[0] / num_seen_utts[0] cv_loss = cv_loss.item() else: cv_loss = total_loss / num_seen_utts logging.info('Epoch {} CV info cv_loss {}'.format(epoch, cv_loss)) if args.local_rank == 0: save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch)) save_checkpoint( model, save_model_path, { 'epoch': epoch, 'lr': lr, 'cv_loss': cv_loss, 'step': executor.step }) writer.add_scalars('epoch', {'cv_loss': cv_loss, 'lr': lr}, epoch) final_epoch = epoch if final_epoch is not None and args.local_rank == 0: final_model_path = os.path.join(model_dir, 'final.pt') os.symlink('{}.pt'.format(final_epoch), final_model_path)
|